Send to

Choose Destination
See comment in PubMed Commons below
Analyst. 2013 Mar 21;138(6):1689-99. doi: 10.1039/c2an36298h.

Effect of pH on the photophysical properties of two new carboxylic-substituted iridium(III) complexes.

Author information

  • 1Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046, PR China.


Two cyclometalated iridium(III) complexes have been prepared based on 2-(4-diphenylamino-phenyl)-quinoline and incorporating carboxylic acid ethyl ester (–COOC(2)H(5), (TPAQCE)(2)Irpic and carboxylic acid (–COOH, (TPAQCOOH)(2)Irpic) substituents at the 4-position of the quinoline ligand, respectively. The absorption, emission and (1)H NMR spectra of (TPAQCE)(2)Irpic and (TPAQCOOH)(2)Irpic under alkaline or acidic conditions demonstrate that they respond to the pH of the surrounding solvent environment. The deprotonation of the carboxylic acid group significantly blue-shifts the metal-to-ligand charge transfer absorption band of (TPAQCOOH)(2)Irpic by 48 nm and enhances the emission quantum-yield in DMSO. In addition, (1)H-NMR titration reveals that (TPAQCOOH)(2)Irpic is deprotonated into negatively charged (TPAQCOO(−))(2)Irpic in free DMSO-d(6) solution, and the acid-induced N^O ancillary ligands cleavage or replacement in (TPAQCOOH)(2)Irpic could be ignored. A water-soluble near-neutral optical pH probe (TPAQCOOH)(2)Irpic with pK(a) of ~7 is also reported. In aqueous buffer, (TPAQCOOH)(2)Irpic possesses an obvious emission response with an excellent linearity in the pH range of 6.50–8.00, showing a promising application in bioprocessing.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk