Send to

Choose Destination
See comment in PubMed Commons below
Water Res. 2013 Apr 1;47(5):1837-47. doi: 10.1016/j.watres.2013.01.003. Epub 2013 Jan 11.

Bactericidal mechanisms of Ag₂O/TNBs under both dark and light conditions.

Author information

  • 1The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.


Ag(2)O/TNBs were fabricated by depositing Ag(2)O nanoparticles on the surface of TiO(2) nanobelts (TNBs). The disinfection activities of Ag(2)O/TNBs on two representative bacterial types: Gram-negative Escherichia coli ATCC15597 and Gram-positive Bacillus subtilis, were examined under both dark and visible light conditions. Ag(2)O/TNBs exhibited stronger bactericidal activities than Ag(2)O nanoparticles and TNBs under both dark and light conditions. For both cell types, disinfection effects of Ag(2)O/TNBs were greater under light conditions relative to those under dark conditions. The bactericidal mechanisms of Ag(2)O/TNBs under both dark and light conditions were explored. Ag(+) ions released from Ag(2)O/TNBs did not contribute to the bactericidal activity of Ag(2)O/TNBs under dark conditions, whereas the released Ag(+) ions showed bactericidal activity under visible light irradiation conditions. Active species (H(2)O(2), O(2)(-)·, and e(-)) generated by Ag(2)O/TNBs played important roles in the disinfection processes under both dark and visible light irradiation conditions. Without the presence of active species, the direct contact of Ag(2)O/TNBs with bacterial cells had no bactericidal effect.

Copyright © 2013 Elsevier Ltd. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk