Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Res Notes. 2013 Jan 30;6:33. doi: 10.1186/1756-0500-6-33.

Quality assessment metrics for whole genome gene expression profiling of paraffin embedded samples.

Author information

  • 1Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. mahoney@mayo.edu

Abstract

BACKGROUND:

Formalin fixed, paraffin embedded tissues are most commonly used for routine pathology analysis and for long term tissue preservation in the clinical setting. Many institutions have large archives of Formalin fixed, paraffin embedded tissues that provide a unique opportunity for understanding genomic signatures of disease. However, genome-wide expression profiling of Formalin fixed, paraffin embedded samples have been challenging due to RNA degradation. Because of the significant heterogeneity in tissue quality, normalization and analysis of these data presents particular challenges. The distribution of intensity values from archival tissues are inherently noisy and skewed due to differential sample degradation raising two primary concerns; whether a highly skewed array will unduly influence initial normalization of the data and whether outlier arrays can be reliably identified.

FINDINGS:

Two simple extensions of common regression diagnostic measures are introduced that measure the stress an array undergoes during normalization and how much a given array deviates from the remaining arrays post-normalization. These metrics are applied to a study involving 1618 formalin-fixed, paraffin-embedded HER2-positive breast cancer samples from the N9831 adjuvant trial processed with Illumina's cDNA-mediated Annealing Selection extension and Ligation assay.

CONCLUSION:

Proper assessment of array quality within a research study is crucial for controlling unwanted variability in the data. The metrics proposed in this paper have direct biological interpretations and can be used to identify arrays that should either be removed from analysis all together or down-weighted to reduce their influence in downstream analyses.

PMID:
23360712
[PubMed - indexed for MEDLINE]
PMCID:
PMC3626608
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk