Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2569-74. doi: 10.1073/pnas.1216462110. Epub 2013 Jan 28.

Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1.

Author information

  • 1University of Virginia School of Medicine, Charlottesville, VA 22908, USA.

Abstract

The Hippo signaling pathway inhibits cell growth and regulates organ size through a kinase cascade that leads to the phosphorylation and nuclear exclusion of the growth-promoting transcriptional coactivator Yes-associated protein (YAP)/Yorkie. It mediates contact inhibition of cell growth downstream of cadherin adhesion molecules and other cell surface proteins. Contact inhibition is often antagonized by mitogenic growth factor signaling. We report an important mechanism for this antagonism, inhibition of Hippo pathway signaling by mitogenic growth factors. EGF treatment of immortalized mammary cells triggers the rapid translocation of YAP into the nucleus along with YAP dephosphorylation, both of which depend on Lats, the terminal kinase in the Hippo pathway. A small-molecule inhibitor screen of downstream effector pathways shows that EGF receptor inhibits the Hippo pathway through activation of PI3-kinase (PI3K) and phosphoinositide-dependent kinase (PDK1), but independent of AKT activity. The PI3K-PDK1 pathway also mediates YAP nuclear translocation downstream of lysophosphatidic acid and serum as a result of constitutive oncogenic activation of PI3K. PDK1 associates with the core Hippo pathway-kinase complex through the scaffold protein Salvador. The entire Hippo core complex dissociates in response to EGF signaling in a PI3K-PDK1-dependent manner, leading to inactivation of Lats, dephosphorylation of YAP, and YAP nuclear accumulation and transcriptional activation of its target gene, CTGF. These findings show that an important activity of mitogenic signaling pathways is to inactivate the growth-inhibitory Hippo pathway and provide a mechanism for antagonism between contact inhibition and growth factor action.

PMID:
23359693
[PubMed - indexed for MEDLINE]
PMCID:
PMC3574943
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk