Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2013 Apr 12;425(7):1143-57. doi: 10.1016/j.jmb.2013.01.018. Epub 2013 Jan 23.

Allosteric inhibition of a zinc-sensing transcriptional repressor: insights into the arsenic repressor (ArsR) family.

Author information

  • 1Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.

Abstract

The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97' NH(ε2)...O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A "cavity" introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, -T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression.

Copyright © 2013 Elsevier Ltd. All rights reserved.

PMID:
23353829
[PubMed - indexed for MEDLINE]
PMCID:
PMC3602352
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk