Send to

Choose Destination
See comment in PubMed Commons below
Matrix Biol. 2013 Apr 24;32(3-4):152-9. doi: 10.1016/j.matbio.2013.01.001. Epub 2013 Jan 16.

Inhibition of integrins αv/α5-dependent functions in melanoma cells by an ECD-disintegrin acurhagin-C.

Author information

  • 1Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan, Taiwan.


Acurhagin-C, a Glu-Cys-Asp (ECD)-disintegrin from Agkistrodon acutus venom, has been reported as an endothelial apoptosis inducer, previously. Here we further evaluate its potential applications in cancer therapy. In vitro assays indicated that acurhagin-C not only may influence the cell viability at higher concentration, but also can potently and dose-dependently decrease cell proliferation in murine B16-F10 melanoma. Otherwise, it also had a dose-dependent inhibition on B16-F10 cell adhesion to extracellular matrices, collagen VI, gelatin B and fibronectin, as well as disturbed transendothelial migration of B16-F10 cell. Morphological study found that acurhagin-C dramatically affected B16-F10 cell adhesion to immobilized fibronectin, leading to the formation of multicellular aggregates with rounded shape. Detected by flow cytometry, acurhagin-C was able to induce B16-F10 cell apoptosis and alter cell cycle distribution through its interactions with integrins αv/α5, and thereafter initiation the apoptotic pathways of caspase-8/-9. Furthermore, acurhagin-C could synergistically enhance the anti-proliferative activity of methotrexate in B16-F10 cells and human melanoma SK-MEL-1 cells, without diminishing the growth of human epidermal melanocytes. Taken together, acurhagin-C proved to be a potent inhibitor of integrin-based functions in melanoma cells by activating the complex apoptotic pathways.

Copyright © 2013 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk