Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Stem Cell. 2013 Mar 7;12(3):329-41. doi: 10.1016/j.stem.2012.12.013. Epub 2013 Jan 17.

BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells.

Author information

  • 1James P. Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.

Abstract

Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed "ROS-low"). Second, ROS-low LSCs aberrantly overexpress BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation.

Copyright © 2013 Elsevier Inc. All rights reserved.

PMID:
23333149
[PubMed - indexed for MEDLINE]
PMCID:
PMC3595363
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk