Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Proteome Res. 2013 Mar 1;12(3):1316-30. doi: 10.1021/pr300971n. Epub 2013 Feb 6.

Comparative proteome analyses reveal that nitric oxide is an important signal molecule in the response of rice to aluminum toxicity.

Author information

  • 1School of Life Sciences, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an223300, China.

Abstract

Acidic soils inhibit crop yield and reduce grain quality. One of the major contributing factors to acidic soil is the presence of soluble aluminum (Al(3+)) ions, but the mechanisms underlying plant responses to Al(3+) toxicity remain elusive. Nitric oxide (NO) is an important messenger and participates in various plant physiological responses. Here, we demonstrate that Al(3+) induced an increase of NO in rice seedlings; adding exogenous NO alleviated the Al(3+) toxicity related to rice growth and photosynthetic capacity, effects that could be reversed by suppressing NO metabolism. Comparative proteomic analyses successfully identified 92 proteins that showed differential expression after Al(3+) or NO treatment. In particular, some of the proteins are involved in reactive oxygen species (ROS) and reactive nitrogen species (RNS) metabolism. Further analyses confirmed that NO treatment reduced Al(3+)-induced ROS and RNS toxicities by increasing the activities and protein expression of antioxidant enzymes, as well as S-nitrosoglutathione reductase (GSNOR). Suppressing GSNOR enzymatic activity aggravated Al(3+) damage to rice and increased the accumulation of RNS. NO treatment altered the expression of proteins associated with cell wall synthesis, cell division and cell structure, calcium signaling and defense responses. On the basis of these results, we propose that NO activates multiple pathways that enhance rice adaptation to Al(3+) toxicity. Such findings may be applicable to crop engineering to enhance yield and improve stress tolerance.

PMID:
23327584
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk