Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Zoolog Sci. 2013 Jan;30(1):1-6. doi: 10.2108/zsj.30.1.

Autocrine growth factors are involved in branching morphogenesis of mouse lung epithelium.

Author information

  • 1Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Chiba 263-8522, Japan.


The current model for branching morphogenesis of mouse lung proposes that the epithelium bifurcates as cells pursue separate sources of fibroblast growth factor (FGF) 10, secreted from mesenchymal tissue through interactions with epithelial tissue. If so, it may be assumed that the lung epithelium will grow into a uniform, expanding ball (without branching) when uniformly exposed to a constant concentration of FGF10. To test this hypothesis, we cultured Matrigel-embedded lung epithelium explants in FGF10-supplemented medium while shaking the culture dishes. Shaking cultures with FGF10 resulted in inferior epithelial branching compared to control cultures at rest. However, this effect was unexpectedly accompanied by poor growth rather than by ball-like expansion. When using FGF1, epithelial cultures grew and branched similarly well under either culture condition. Thus, we hypothesized that FGF10 signaling must be mediated by autocrine FGFs, such as FGF1, which might easily diffuse through the culture medium in the shaking culture. Reverse transcription-polymerase chain reaction analyses showed that FGF9 as well as FGF1 were expressed in the epithelium in vivo and in FGF10-stimulated epithelium in vitro, and FGF9 induced epithelial branching at a much lower concentration than FGF10. These results suggest that FGF1 and FGF9 may mediate FGF10 signaling and induce branching in the lung epithelium via autocrine signaling.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Atypon
    Loading ...
    Write to the Help Desk