Send to:

Choose Destination
See comment in PubMed Commons below
Biomacromolecules. 2013 Feb 11;14(2):438-47. doi: 10.1021/bm301676c. Epub 2013 Jan 28.

In vitro synthesis of hyperbranched α-glucans using a biomimetic enzymatic toolbox.

Author information

  • 1Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, Toulouse, France.


Glycogen biosynthesis requires the coordinated action of elongating and branching enzymes, of which the synergetic action is still not clearly understood. We have designed an experimental plan to develop and fully exploit a biomimetic system reproducing in vitro the activities involved in the formation of α(1,4) and α(1,6) glycosidic linkages during glycogen biosynthesis. This method is based on the use of two bacterial transglucosidases, the amylosucrase from Neisseria polysaccharea and the branching enzyme from Rhodothermus obamensis . The α-glucans synthesized from sucrose, a low cost agroresource, by the tandem action of the two enzymes, have been characterized by using complementary enzymatic, chromatographic, and imaging techniques. In a single step, linear and branched α-glucans were obtained, whose proportions, morphology, molar mass, and branching degree depended on both the initial sucrose concentration and the ratio between elongating and branching enzymes. In particular, spherical hyperbranched α-glucans with a controlled mean diameter (ranging from 10 to 150 nm), branching degree (from 10 to 13%), and weight-average molar mass (3.7 × 10(6) to 4.4 × 10(7) g.mol(-1)) were synthesized. Despite their structure, which is similar to that of natural glycogens, the mechanisms involved in their in vitro synthesis appeared to be different from those involved in the biosynthesis of native hyperbranched α-glucans.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk