Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Renal Physiol. 2013 Mar 15;304(6):F781-7. doi: 10.1152/ajprenal.00621.2012. Epub 2013 Jan 9.

Quantification of the electrostatic properties of the glomerular filtration barrier modeled as a charged fiber matrix separating anionic from neutral Ficoll.

Author information

  • 1Department of Nephrology, University Hospital of Lund, Lund, Sweden.

Abstract

In the current study we explore the electrostatic interactions on the transport of anionic Ficoll (aFicoll) vs. neutral Ficoll (nFicoll) over the glomerular filtration barrier (GFB) modeled as a charged fiber matrix. We first analyze experimental sieving data for the rat glomerulus, and second, we explore some of the basic implications of a theoretical model for the electrostatic interactions between a charged solute and a charged fiber-matrix barrier. To explain the measured difference in glomerular transport between nFicoll and aFicoll (Axelsson J, Sverrisson K, Rippe A, Fissell W, Rippe B. Am J Physiol 301: F708-F712, 2011), the present simulations demonstrate that the surface charge density needed on a charged fiber matrix must lie between -0.005 C/m(2) and -0.019 C/m(2), depending on the surface charge density of the solute. This is in good agreement with known surface charge densities for many proteins in the body. In conclusion, the current results suggest that electrical charge makes a moderate contribution to glomerular permeability, while molecular size and conformation seem to be more important. Yet, the weak electrical charge obtained in this study can be predicted to nearly totally exclude albumin from permeating through "high-selectivity" pathways in a charged-fiber matrix of the GFB.

PMID:
23303410
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk