Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Physiol. 2013 Mar 15;591(Pt 6):1447-61. doi: 10.1113/jphysiol.2012.247478. Epub 2013 Jan 7.

Endothelial alkalinisation inhibits gap junction communication and endothelium-derived hyperpolarisations in mouse mesenteric arteries.

Author information

  • 1E. Boedtkjer: Department of Biomedicine, Aarhus University, Ole Worms Allé 6, Building 1180, DK-8000 Aarhus C, Denmark. eb@fi.au.dk

Abstract

Abstract  Gap junctions mediate intercellular signalling in arteries and contribute to endothelium-dependent vasorelaxation, conducted vascular responses and vasomotion. Considering its putative role in vascular dysfunction, mechanistic insights regarding the control of gap junction conductivity are required. Here, we investigated the consequences of endothelial alkalinisation for gap junction communication and endothelium-dependent vasorelaxation in resistance arteries. We studied mesenteric arteries from NMRI mice by myography, confocal fluorescence microscopy and electrophysiological techniques. Removing CO2/HCO3(-), reducing extracellular [Cl(-)] or adding 4,4-diisothiocyanatostilbene-2,2-disulphonic acid inhibited or reversed Cl(-)/HCO3(-) exchange, alkalinised the endothelium by 0.2-0.3 pH units and inhibited acetylcholine-induced vasorelaxation. NO-synthase-dependent vasorelaxation was unaffected by endothelial alkalinisation whereas vasorelaxation dependent on small- and intermediate-conductance Ca(2+)-activated K(+) channels was attenuated by ∼75%. The difference in vasorelaxation between arteries with normal and elevated endothelial intracellular pH (pHi) was abolished by the gap junction inhibitors 18β-glycyrrhetinic acid and carbenoxolone while other putative modulators of endothelium-derived hyperpolarisations - Ba(2+), ouabain, iberiotoxin, 8Br-cAMP and polyethylene glycol catalase - had no effect. In the absence of CO2/HCO3(-), addition of the Na(+)/H(+)-exchange inhibitor cariporide normalised endothelial pHi and restored vasorelaxation to acetylcholine. Endothelial hyperpolarisations and Ca(2+) responses to acetylcholine were unaffected by omission of CO2/HCO3(-). By contrast, dye transfer between endothelial cells and endothelium-derived hyperpolarisations of vascular smooth muscle cells stimulated by acetylcholine or the proteinase-activated receptor 2 agonist SLIGRL-amide were inhibited in the absence of CO2/HCO3(-). We conclude that intracellular alkalinisation of endothelial cells attenuates endothelium-derived hyperpolarisations in resistance arteries due to inhibition of gap junction communication. These findings highlight the role of pHi in modulating vascular function.

PMID:
23297309
[PubMed - indexed for MEDLINE]
PMCID:
PMC3607165
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk