Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Ultrason Imaging. 2013 Jan;35(1):30-44. doi: 10.1177/0161734612469511.

Delineation of atherosclerotic plaque using subharmonic imaging filtering techniques and a commercial intravascular ultrasound system.

Author information

  • 1Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA.

Abstract

The ability to delineate atherosclerotic plaque from the surrounding tissue using custom-developed subharmonic imaging (SHI) digital filtering techniques was investigated in vivo using a commercially available system. Atherosclerosis was induced in the aorta of two Watanabe Heritable Hyperlipidemic rabbits following which injections of an ultrasound contrast agent (UCA) Definity (Lantheus Medical Imaging, N Billerica, Massachusetts) were administered. Imaging was performed using a Galaxy intravascular ultrasound (IVUS) scanner (Boston Scientific, Natick, Massachusetts) equipped with an Atlantis® SR Pro Imaging Catheter (Boston Scientific). Four preliminary band-pass filters were designed to isolate the subharmonic signal (from surrounding tissue) and applied to the radio-frequency (RF) data. Preliminary filter performances were compared in terms of vessel-tissue contrast-to-tissue ratio (CTR) and visual examination. Based on preliminary results, a subharmonic adaptive filter and a stopband (SB) filter were designed and applied to the RF data. Images were classified as fundamental, SHI, and SB. Four readers performed qualitative analysis of 168 randomly selected images (across all three imaging modes). The images were scored for overall image quality, image noise, plaque visualization, and vessel lumen visualization. A Wilcoxon signed-rank test was used to compare the scores followed by intraclass correlation (ICC) evaluation. Quantitative analysis was performed by calculating the CTRs for the vessel-to-plaque and vessel-to-tissue (compared using a paired student's t test). Qualitative analysis showed SHI and SB to have significantly less image noise relative to the fundamental mode (p < 0.001). Fundamental mode scored significantly higher than SHI and SB for the remaining three categories. ICC showed mixed results among reader evaluation for delineation of plaque. However, quantitatively, SHI produced the best vessel-plaque CTR.

PMID:
23287505
[PubMed - indexed for MEDLINE]
PMCID:
PMC3683316
Free PMC Article

Images from this publication.See all images (10)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk