Send to

Choose Destination
See comment in PubMed Commons below
BMC Neurosci. 2013 Jan 2;14:1. doi: 10.1186/1471-2202-14-1.

PI3K/Akt-independent negative regulation of JNK signaling by MKP-7 after cerebral ischemia in rat hippocampus.

Author information

  • 1Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 210029, People's Republic of China.



The inactivation of c-Jun N-terminal kinase (JNK) is associated with anti-apoptotic and anti-inflammatory effects in cerebral ischemia, which can be induced by an imbalance between upstream phosphatases and kinases.


Mitogen-activated protein kinase phosphatase 7 (MKP-7) was upregulated significantly at 4 h of reperfusion postischemia in rat hippocampi. By administration of cycloheximide or siRNA against mitogen-activated protein kinase phosphatase 7 (MKP-7) in a rat model of ischemia/reperfusion, an obvious enhancement of JNK activity was observed in 4 h of reperfusion following ischemia, suggesting MKP-7 was involved in JNK inactivation after ischemia. The subcellular localization of MKP-7 altered after ischemia, and the inhibition of MKP-7 nuclear export by Leptomycin B up-regulated JNK activity. Although PI3K/Akt inhibition could block downregulation of JNK activity through SEK1 and MKK-7 activation, PI3K/Akt activity was not associated with the regulation of JNK by MKP-7.


MKP-7, independently of PI3K/Akt pathway, played a key role in downregulation of JNK activity after ischemia in the rat hippocampus, and the export of MKP-7 from the nucleus was involved in downregulation of cytoplasmic JNK activity in response to ischemic stimuli.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk