Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Arch Virol. 2013 May;158(5):1055-64. doi: 10.1007/s00705-012-1585-3. Epub 2012 Dec 28.

The secretory pathway and the actomyosin motility system are required for plasmodesmatal localization of the P7-1 of rice black-streaked dwarf virus.

Author information

  • 1State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China.


Rice black-streaked dwarf virus (RBSDV), a plant-infecting reovirus (genus Fijivirus), generally induces virus-containing tubules in infected cells. The nonstructural protein P7-1, encoded by the first open reading frame of segment 7, is involved in forming the structural matrix of these tubules. In experiments to investigate the subcellular localization of P7-1 in Nicotiana benthamiana epidermal cells, fluorescence of P7-1:eGFP was observed in the nucleus, cytoplasm and cell periphery, and in punctate points along the cell wall of plasmolyzed cells. Co-localization with plasmodesmata-located protein 1 showed that P7-1 formed the punctate points at plasmodesmata. Mutational analysis demonstrated that transmembrane domain 1 and adjacent residues were necessary and sufficient for P7-1 to form punctate structures at the cell wall in the plasmolyzed cells. Chemical drug and protein inhibitor treatments indicated that P7-1 utilized the ER-to-Golgi secretory pathway and the actomyosin motility system for its intracellular transport. The plasmodesmatal localization of RBSDV P7-1 is therefore dependent on the secretory pathway and the actomyosin motility system.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk