Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biotechnol Adv. 2013 Dec;31(8):1109-19. doi: 10.1016/j.biotechadv.2012.12.004. Epub 2012 Dec 21.

Getting the most out of parasitic helminth transcriptomes using HelmDB: implications for biology and biotechnology.

Author information

  • 1Faculty of Veterinary Science, The University of Melbourne, Victoria 3010, Australia.

Abstract

Compounded by a massive global food shortage, many parasitic diseases have a devastating, long-term impact on animal and human health and welfare worldwide. Parasitic helminths (worms) affect the health of billions of animals. Unlocking the systems biology of these neglected pathogens will underpin the design of new and improved interventions against them. Currently, the functional annotation of genomic and transcriptomic sequence data for socio-economically important parasitic worms relies almost exclusively on comparative bioinformatic analyses using model organism- and other databases. However, many genes and gene products of parasitic helminths (often >50%) cannot be annotated using this approach, because they are specific to parasites and/or do not have identifiable homologs in other organisms for which sequence data are available. This inability to fully annotate transcriptomes and predicted proteomes is a major challenge and constrains our understanding of the biology of parasites, interactions with their hosts and of parasitism and the pathogenesis of disease on a molecular level. In the present article, we compiled transcriptomic data sets of key, socioeconomically important parasitic helminths, and constructed and validated a curated database, called HelmDB (www.helmdb.org). We demonstrate how this database can be used effectively for the improvement of functional annotation by employing data integration and clustering. Importantly, HelmDB provides a practical and user-friendly toolkit for sequence browsing and comparative analyses among divergent helminth groups (including nematodes and trematodes), and should be readily adaptable and applicable to a wide range of other organisms. This web-based, integrative database should assist 'systems biology' studies of parasitic helminths, and the discovery and prioritization of novel drug and vaccine targets. This focus provides a pathway toward developing new and improved approaches for the treatment and control of parasitic diseases, with the potential for important biotechnological outcomes.

Copyright © 2012 Elsevier Inc. All rights reserved.

KEYWORDS:

Annotation-improvement; Bioinformatics; Genomics; Parasitic helminths (nematode and trematode); Systems biology; Transcriptomics

PMID:
23266393
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk