Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cardiovasc Electrophysiol. 2013 Apr;24(4):419-26. doi: 10.1111/jce.12052. Epub 2012 Dec 17.

Integration of merged delayed-enhanced magnetic resonance imaging and multidetector computed tomography for the guidance of ventricular tachycardia ablation: a pilot study.

Author information

  • 1Department of cardiovascular imaging, CHU/Université de Bordeaux, Pessac, France. hcochet@wanadoo.fr

Abstract

BACKGROUND:

Delayed enhancement (DE) MRI can assess the fibrotic substrate of scar-related VT. MDCT has the advantage of inframillimetric spatial resolution and better 3D reconstructions. We sought to evaluate the feasibility and usefulness of integrating merged MDCT/MRI data in 3D-mapping systems for structure-function assessment and multimodal guidance of VT mapping and ablation.

METHODS:

Nine patients, including 3 ischemic cardiomyopathy (ICM), 3 nonischemic cardiomyopathy (NICM), 2 myocarditis, and 1 redo procedure for idiopathic VT, underwent MRI and MDCT before VT ablation. Merged MRI/MDCT data were integrated in 3D-mapping systems and registered to high-density endocardial and epicardial maps. Low-voltage areas (<1.5 mV) and local abnormal ventricular activities (LAVA) during sinus rhythm were correlated to DE at MRI, and wall-thinning (WT) at MDCT.

RESULTS:

Endocardium and epicardium were mapped with 391 ± 388 and 1098 ± 734 points per map, respectively. Registration of MDCT allowed visualization of coronary arteries during epicardial mapping/ablation. In the idiopathic patient, integration of MRI data identified previously ablated regions. In ICM patients, both DE at MRI and WT at MDCT matched areas of low voltage (overlap 94 ± 6% and 79 ± 5%, respectively). In NICM patients, wall-thinning areas matched areas of low voltage (overlap 63 ± 21%). In patients with myocarditis, subepicardial DE matched areas of epicardial low voltage (overlap 92 ± 12%). A total number of 266 LAVA sites were found in 7/9 patients. All LAVA sites were associated to structural substrate at imaging (90% inside, 100% within 18 mm).

CONCLUSION:

The integration of merged MDCT and DEMRI data is feasible and allows combining substrate assessment with high-spatial resolution to better define structure-function relationship in scar-related VT.

© 2012 Wiley Periodicals, Inc.

PMID:
23252727
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk