Send to:

Choose Destination
See comment in PubMed Commons below
Nano Lett. 2013 Jan 9;13(1):293-300. doi: 10.1021/nl304104q. Epub 2012 Dec 24.

Architecturing hierarchical function layers on self-assembled viral templates as 3D nano-array electrodes for integrated Li-ion microbatteries.

Author information

  • 1Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.


This work enables an elegant bottom-up solution to engineer 3D microbattery arrays as integral power sources for microelectronics. Thus, multilayers of functional materials were hierarchically architectured over tobacco mosaic virus (TMV) templates that were genetically modified to self-assemble in a vertical manner on current-collectors, so that optimum power and energy densities accompanied with excellent cycle-life could be achieved on a minimum footprint. The resultant microbattery based on self-aligned LiFePO(4) nanoforests of shell-core-shell structure, with precise arrangement of various auxiliary material layers including a central nanometric metal core as direct electronic pathway to current collector, delivers excellent energy density and stable cycling stability only rivaled by the best Li-ion batteries of conventional configurations, while providing rate performance per foot-print and on-site manufacturability unavailable from the latter. This approach could open a new avenue for microelectromechanical systems (MEMS) applications, which would significantly benefit from the concept that electrochemically active components be directly engineered and fabricated as an integral part of the integrated circuit (IC).

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk