Format

Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 2013 Feb;161(2):893-903. doi: 10.1104/pp.112.208603. Epub 2012 Dec 18.

Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis.

Author information

  • 1Dartmouth College, Department of Biological Sciences, Hanover, New Hampshire 03755, USA.

Abstract

In plants, iron (Fe) uptake and homeostasis are critical for survival, and these processes are tightly regulated at the transcriptional and posttranscriptional levels. Circadian clocks are endogenous oscillating mechanisms that allow an organism to anticipate environmental changes to coordinate biological processes both with one another and with the environmental day/night cycle. The plant circadian clock controls many physiological processes through rhythmic expression of transcripts. In this study, we examined the expression of three Fe homeostasis genes (IRON REGULATED TRANSPORTER1 [IRT1], BASIC HELIX LOOP HELIX39, and FERRITIN1) in Arabidopsis (Arabidopsis thaliana) using promoter:LUCIFERASE transgenic lines. Each of these promoters showed circadian regulation of transcription. The circadian clock monitors a number of clock outputs and uses these outputs as inputs to modulate clock function. We show that this is also true for Fe status. Fe deficiency results in a lengthened circadian period. We interrogated mutants impaired in the Fe homeostasis response, including irt1-1, which lacks the major high-affinity Fe transporter, and fit-2, which lacks Fe deficiency-induced TRANSCRIPTION FACTOR1, a basic helix-loop-helix transcription factor necessary for induction of the Fe deficiency response. Both mutants exhibit symptoms of Fe deficiency, including lengthened circadian period. To determine which components are involved in this cross talk between the circadian and Fe homeostasis networks, we tested clock- or Fe homeostasis-related mutants. Mutants defective in specific clock gene components were resistant to the change in period length under different Fe conditions observed in the wild type, suggesting that these mutants are impaired in cross talk between Fe homeostasis and the circadian clock.

PMID:
23250624
[PubMed - indexed for MEDLINE]
PMCID:
PMC3561027
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk