Display Settings:

Format

Send to:

Choose Destination
Int J Mol Sci. 2012 Dec 14;13(12):17121-37. doi: 10.3390/ijms131217121.

Natural Biomolecules and Protein Aggregation: Emerging Strategies against Amyloidogenesis.

Author information

  • Institute of Biophysics, CNR, Italian National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy. antonella.sgarbossa@pi.ibf.cnr.it.

Abstract

Biomolecular self-assembly is a fundamental process in all organisms. As primary components of the life molecular machinery, proteins have a vast array of resources available to them for self-assembly in a functional structure. Protein self-assembly, however, can also occur in an aberrant way, giving rise to non-native aggregated structures responsible for severe, progressive human diseases that have a serious social impact. Different neurodegenerative disorders, like Huntington's, Alzheimer's, and spongiform encephalopathy diseases, have in common the presence of insoluble protein aggregates, generally termed "amyloid," that share several physicochemical features: a fibrillar morphology, a predominantly beta-sheet secondary structure, birefringence upon staining with the dye Congo red, insolubility in common solvents and detergents, and protease resistance. Conformational constrains, hydrophobic and stacking interactions can play a key role in the fibrillogenesis process and protein-protein and peptide-peptide interactions-resulting in self-assembly phenomena of peptides yielding fibrils-that can be modulated and influenced by natural biomolecules. Small organic molecules, which possess both hydrophilic and hydrophobic moieties able to bind to peptide/protein molecules through hydrogen bonds and hydrophobic and aromatic interactions, are potential candidates against amyloidogenesis. In this review some significant case examples will be critically discussed.

PMID:
23242152
[PubMed]
PMCID:
PMC3546742
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
    Loading ...
    Write to the Help Desk