Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2012 Dec 12;32(50):18137-49. doi: 10.1523/JNEUROSCI.3612-12.2012.

Gravin orchestrates protein kinase A and β2-adrenergic receptor signaling critical for synaptic plasticity and memory.

Author information

  • 1Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA. havekesr@sas.upenn.edu

Abstract

A kinase-anchoring proteins (AKAPs) organize compartmentalized pools of protein kinase A (PKA) to enable localized signaling events within neurons. However, it is unclear which of the many expressed AKAPs in neurons target PKA to signaling complexes important for long-lasting forms of synaptic plasticity and memory storage. In the forebrain, the anchoring protein gravin recruits a signaling complex containing PKA, PKC, calmodulin, and PDE4D (phosphodiesterase 4D) to the β2-adrenergic receptor. Here, we show that mice lacking the α-isoform of gravin have deficits in PKA-dependent long-lasting forms of hippocampal synaptic plasticity including β2-adrenergic receptor-mediated plasticity, and selective impairments of long-term memory storage. Furthermore, both hippocampal β2-adrenergic receptor phosphorylation by PKA, and learning-induced activation of ERK in the CA1 region of the hippocampus are attenuated in mice lacking gravin-α. We conclude that gravin compartmentalizes a significant pool of PKA that regulates learning-induced β2-adrenergic receptor signaling and ERK activation in the hippocampus in vivo, thereby organizing molecular interactions between glutamatergic and noradrenergic signaling pathways for long-lasting synaptic plasticity, and memory storage.

PMID:
23238728
[PubMed - indexed for MEDLINE]
PMCID:
PMC3533251
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk