Format

Send to:

Choose Destination
See comment in PubMed Commons below
Microbiologyopen. 2013 Feb;2(1):18-34. doi: 10.1002/mbo3.55. Epub 2012 Dec 11.

Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability.

Author information

  • 1Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA.

Abstract

Staphylococcus aureus is a highly virulent and successful pathogen that causes a diverse array of diseases. Recently, an increase of severe infections in healthy subjects has been observed, caused by community-associated methicillin-resistant S. aureus (CA-MRSA). The reason for enhanced CA-MRSA virulence is unclear; however, work suggests that it results from hypersecretion of agr-regulated toxins, including secreted proteases. In this study, we explore the contribution of exo-proteases to CA-MRSA pathogenesis using a mutant lacking all 10 enzymes. We show that they are required for growth in peptide-rich environments, serum, in the presence of antimicrobial peptides (AMPs), and in human blood. We also reveal that extracellular proteases are important for resisting phagocytosis by human leukocytes. Using murine infection models, we reveal contrasting roles for the proteases in morbidity and mortality. Upon exo-protease deletion, we observed decreases in abscess formation, and impairment during organ invasion. In contrast, we observed hypervirulence of the protease-null strain in the context of mortality. This dichotomy is explained by proteomic analyses, which demonstrates exo-proteases to be key mediators of virulence-determinant stability. Specifically, increased abundance of both secreted (e.g. α-toxin, Psms, LukAB, LukE, PVL, Sbi, γ-hemolysin) and surface-associated (e.g. ClfA+B, FnbA+B, IsdA, Spa) proteins was observed upon protease deletion. Collectively, our findings provide a unique insight into the progression of CA-MRSA infections, and the role of secreted proteolytic enzymes.

© 2012 The Authors. Published by Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

PMID:
23233325
[PubMed - indexed for MEDLINE]
PMCID:
PMC3584211
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Write to the Help Desk