Send to

Choose Destination
See comment in PubMed Commons below
Lab Invest. 2013 Feb;93(2):159-67. doi: 10.1038/labinvest.2012.163. Epub 2012 Nov 19.

KCa3.1 channels mediate the increase of cell migration and proliferation by advanced glycation endproducts in cultured rat vascular smooth muscle cells.

Author information

  • 1Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China.


The mechanisms underlying the involvement of advanced glycation endproducts (AGEs) in diabetic atherosclerosis are not fully understood. The present study was designed to investigate whether intermediate-conductance Ca(2+)-activated K(+) channels (K(Ca)3.1 channels) are involved in migration and proliferation induced by AGEs in cultured rat vascular smooth muscle cells (VSMCs) using approaches of whole-cell patch voltage-clamp, cell proliferation and migration assay, and western blot analysis. It was found that the current density and protein level of K(Ca)3.1 channels were enhanced in cells incubated with AGE-BSA (bovine serum albumin), and the effects were reversed by co-incubation of AGE-BSA with anti-RAGE (anti-receptors of AGEs) antibody. The ERK1/2 inhibitors PD98059 and U0126, the P38-MAPK inhibitors SB203580 and SB202190, or the PI3K inhibitors LY294002 and wortmannin countered the K(Ca)3.1 channel expression by AGE-BSA. In addition, AGE-BAS increased cell migration and proliferation, and the effects were fully reversed with anti-RAGE antibody, the K(Ca)3.1 channel blocker TRAM-34, or K(Ca)3.1 small interfering RNA. These results demonstrate for the first time that AGEs-induced increase of migration and proliferation is related to the upregulation of K(Ca)3.1 channels in rat VMSCs, and the intracellular signals ERK1/2, P38-MAPK and PI3K are involved in the regulation of K(Ca)3.1 channel expression.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk