Format

Send to

Choose Destination
See comment in PubMed Commons below
Brain Topogr. 2013 Jul;26(3):363-77. doi: 10.1007/s10548-012-0267-5. Epub 2012 Dec 4.

The change of functional connectivity specificity in rats under various anesthesia levels and its neural origin.

Author information

  • 1Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St. SE, Minneapoli, MN 55455, USA.

Abstract

Spatiotemporal correlations of spontaneous blood oxygenation level dependent (BOLD) signals measured in the resting brain have been found to imply many resting-state coherent networks under both awake/conscious and anesthetized/unconscious conditions. To understand the resting-state brain networks in the unconscious state, spontaneous BOLD signals from the rat sensorimotor cortex were studied across a wide range of anesthesia levels induced by isoflurane. Distinct resting-state networks covering functionally specific sub-regions of the sensorimotor system were observed under light anesthesia with 1.0% isoflurane; however, they gradually merged into a highly synchronized and spatially less-specific network under deep anesthesia with 1.8% isoflurane. The EEG power correlations recorded using three electrodes from a separate group of rats showed similar dependency on anesthesia depth, suggesting the neural origin of the change in functional connectivity specificity. The specific-to-less-specific transition of resting-state networks may reflect a functional reorganization of the brain at different anesthesia levels or brain states.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk