Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2012 Nov 20;51(33):8041-6. doi: 10.1364/AO.51.008041.

Comparison of the optoacoustic signal generation efficiency of different nanoparticular contrast agents.

Author information

  • 1Fraunhofer Institut für Biomedizinische Technik (IBMT), Ensheimer Strasse 48, Sankt Ingbert D-66386, Germany. Wolfgang.Bost@ibmt.fraunhofer.de


Optoacoustic imaging represents a new modality that allows noninvasive in vivo molecular imaging with optical contrast and acoustical resolution. Whereas structural or functional imaging applications such as imaging of vasculature do not require contrast enhancing agents, nanoprobes with defined biochemical binding behavior are needed for molecular imaging tasks. Since the contrast of this modality is based on the local optical absorption coefficient, all particle or molecule types that show significant absorption cross sections in the spectral range of the laser wavelength used for signal generation are suitable contrast agents. Currently, several particle types such as gold nanospheres, nanoshells, nanorods, or polymer particles are used as optoacoustic contrast agents. These particles have specific advantages with respect to their absorption properties, or in terms of biologically relevant features (biodegradability, binding to molecular markers). In the present study, a comparative analysis of the signal generation efficiency of gold nanorods, polymeric particles, and magnetite particles using a 1064 nm Nd:YAG laser for signal generation is described.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk