Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2013 Jan 15;73(2):756-66. doi: 10.1158/0008-5472.CAN-12-2651. Epub 2012 Nov 29.

miR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation.

Author information

  • 1Department of Microbiology, Zhongshan School of Medicine; Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Guangzhou, Guangdong, China.


Deeper mechanistic understanding of lung adenocarcinoma (non-small cell lung carcinoma, or NSCLC), a leading cause of cancer-related deaths overall, may lead to more effective therapeutic strategies. In analyzing NSCLC clinical specimens and cell lines, we discovered a uniform decrease in miR-186 (MIR186) expression in comparison with normal lung tissue or epithelial cell lines. miR-186 expression correlated with patient survival, with median overall survival time of 63.0 or 21.5 months in cases exhibiting high or low levels of miR-186, respectively. Enforced overexpression of miR-186 in NSCLC cells inhibited proliferation by inducing G(1)-S checkpoint arrest. Conversely, RNA interference-mediated silencing miR-186 expression promoted cell-cycle progression and accelerated the proliferation of NSCLC cells. Cyclin D1 (CCND1), cyclin-dependent kinase (CDK)2, and CDK6 were each directly targeted for inhibition by miR-186 and restoring their expression reversed miR-186-mediated inhibition of cell-cycle progression. The inverse relationship between expression of miR-186 and its targets was confirmed in NSCLC tumor xenografts and clinical specimens. Taken together, our findings established a tumor-suppressive role for miR-186 in the progression of NSCLC.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk