Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2013 Jan 4;288(1):10-9. doi: 10.1074/jbc.M112.402461. Epub 2012 Nov 26.

Mechanistic target of rapamycin complex 1 (mTORC1)-mediated phosphorylation is governed by competition between substrates for interaction with raptor.

Author information

  • 1Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.


In this study, the interaction of mTORC1 with its downstream targets p70S6K1 and 4E-BP1 was evaluated in both mouse liver and mouse embryonic fibroblasts following combined disruption of the genes encoding 4E-BP1 and 4E-BP2. Phosphorylation of p70S6K1 was dramatically elevated in the livers of mice lacking 4E-BP1 and 4E-BP2 following feeding-induced activation of mTORC1. Immunoprecipitation of mTORC1 suggested that elevated phosphorylation was the result of enhanced interaction of p70S6K1 with raptor. These findings were extended to a cell culture system wherein loss of 4E-BP1 and 4E-BP2 resulted in elevated interaction of p70S6K1 with IGF1-induced activation of mTORC1 in conjunction with an enhanced rate of p70S6K1 phosphorylation at Thr-389. Furthermore, cotransfecting HA-p70S6K1 with 4E-BP1, but not 4E-BP1(F114A), reduced recovery of mTORC1 in HA-p70S6K1 immunoprecipitates. Together, these findings support the conclusion that, in the absence of 4E-BP proteins, mTORC1-mediated phosphorylation of p70S6K1 is elevated by a reduction in competition between the two substrates for interaction with raptor.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk