Send to

Choose Destination
See comment in PubMed Commons below
BMC Bioinformatics. 2012;13 Suppl 16:S10. doi: 10.1186/1471-2105-13-S16-S10. Epub 2012 Nov 5.

A tutorial in displaying mass spectrometry-based proteomic data using heat maps.

Author information

  • 1Center for Computational Diagnostics, IU School of Medicine, Indianapolis, IN, USA.


Data visualization plays a critical role in interpreting experimental results of proteomic experiments. Heat maps are particularly useful for this task, as they allow us to find quantitative patterns across proteins and biological samples simultaneously. The quality of a heat map can be vastly improved by understanding the options available to display and organize the data in the heat map. This tutorial illustrates how to optimize heat maps for proteomics data by incorporating known characteristics of the data into the image. First, the concepts used to guide the creating of heat maps are demonstrated. Then, these concepts are applied to two types of analysis: visualizing spectral features across biological samples, and presenting the results of tests of statistical significance. For all examples we provide details of computer code in the open-source statistical programming language R, which can be used for biologists and clinicians with little statistical background. Heat maps are a useful tool for presenting quantitative proteomic data organized in a matrix format. Understanding and optimizing the parameters used to create the heat map can vastly improve both the appearance and the interoperation of heat map data.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk