Format

Send to

Choose Destination
See comment in PubMed Commons below
Dalton Trans. 2013 Feb 7;42(5):1810-9. doi: 10.1039/c2dt31923c. Epub 2012 Nov 20.

Hydrogen storage of a novel combined system of LiNH2-NaMgH3: synergistic effects of in situ formed alkali and alkaline-earth metal hydrides.

Author information

  • 1Department of Materials Science, Fudan University, Shanghai 200433, China.

Abstract

Bimetallic hydride NaMgH(3) is used for the first time as a vehicle to enhance hydrogen release and uptake from LiNH(2). The combination of NaMgH(3) with LiNH(2) at a molar ratio of 1 : 2 can release about 4.0 wt% of hydrogen without detectable NH(3) emission in the temperature range of 45 °C to 325 °C and exhibiting superior dehydrogenation as compared to individual NaH and/or MgH(2) combined with LiNH(2). A high capacity retention of about 75% resulting from the introduction of NaMgH(3) is also achieved in LiNH(2) as well as re-hydrogenation under milder conditions of 180 °C and 5 MPa H(2) pressure. These significant improvements are attributed to synergistic effects of in situ formed NaH and MgH(2)via the decomposition of NaMgH(3) where a succession of competing reactions from the cyclic consumption/recovery of NaH are involved and serve as a "carrier" for the ultra-rapid conveyance of the N-containing species between the [NH(2)](-) amide and the resulting [NH](2-) imide complexes.

[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk