Display Settings:

Format

Send to:

Choose Destination
J Nat Prod. 2012 Dec 28;75(12):2101-7. doi: 10.1021/np3005248. Epub 2012 Nov 19.

Effect of allyl sulfides from garlic essential oil on intracellular ca2+ levels in renal tubular cells.

Author information

  • 1Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.

Abstract

Diallyl sulfide (1), diallyl disulfide (2), and diallyl trisulfide (3), which are major organosulfur compounds of garlic (Allium sativum), are recognized as a group of potential chemopreventive compounds. In this study, the early signaling effects of 3 were examined on Madin-Darby canine kidney (MDCK) cells loaded with the Ca(2+)-sensitive dye fura-2. It was found that 3 caused an immediate and sustained increase of [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 40 μM). Compound 3 also induced a [Ca(2+)](i) elevation when extracellular Ca(2+) was removed, but the magnitude was reduced by 45%. In Ca(2+)-free medium, the 3-induced [Ca(2+)](i) level was abolished by depleting stored Ca(2+) with 1 μM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor). Elevation of [Ca(2+)](i) caused by 3 in the Ca(2+)-containing medium was not affected by modulation of protein kinase C activity. The 3-induced Ca(2+) influx was inhibited by nifedipine and nicardipine (1 μM). U73122, an inhibitor of phospholipase C, abolished ATP (but not the 3-induced [Ca(2+)](i) level). These findings suggest that 3 induced a significant [Ca(2+)](i) elevation in MDCK renal tubular cells by stimulating both extracellular Ca(2+) influx and thapsigargin-sensitive intracellular Ca(2+) release via as yet unidentified mechanisms. Furthermore, the order of the allyl sulfide-induced [Ca(2+)](i) elevation and cell viability was 1 < 2 < 3. The differential effect of allyl sulfides on Ca(2+) signaling and cell death appears to correlate with the number of sulfur atoms in the structure of these allyl sulfides.

PMID:
23163425
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk