Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(10):e48123. doi: 10.1371/journal.pone.0048123. Epub 2012 Oct 29.

Rule for scaling shoulder rotation angles while walking through apertures.

Author information

  • 1Department of Health Promotion Science, Tokyo Metropolitan University, Tokyo, Japan. higuchit@tmu.ac.jp

Abstract

BACKGROUND:

When an individual is trying to fit into a narrow aperture, the amplitude of shoulder rotations in the yaw dimension is well proportioned to the relative aperture width to body width (referred to as the critical ratio value). Based on this fact, it is generally considered that the central nervous system (CNS) determines the amplitudes of shoulder rotations in response to the ratio value. The present study was designed to determine whether the CNS follows another rule in which a minimal spatial margin is created at the aperture passage; this rule is beneficial particularly when spatial requirements for passage (i.e., the minimum passable width) become wider than the body with an external object.

METHODOLOGY/PRINCIPAL FINDINGS:

Eight young participants walked through narrow apertures of three widths (ratio value = 0.9, 1.0, and 1.1) while holding one of three horizontal bars (short, 1.5 and 2.5 times the body width). The results showed that the amplitude of rotation angles became smaller for the respective ratio value as the bar increased in length. This was clearly inconsistent with the general hypothesis that predicted the same rotation angles for the same ratio value. Instead, the results were better explained with a new hypothesis which predicted that a smaller rotation angle was sufficient to produce a constant spatial margin as the bar-length increased in length.

CONCLUSION:

The results show that, at least under safe circumstances, the CNS is likely to determine the amplitudes of shoulder rotations to ensure the minimal spatial margin being created at one side of the body at the time of crossing. This was new in that the aperture width subtracted from the width of the body (plus object) was taken into account for the visuomotor control of locomotion through apertures.

PMID:
23144736
[PubMed - indexed for MEDLINE]
PMCID:
PMC3483222
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk