Send to:

Choose Destination
See comment in PubMed Commons below
PLoS Pathog. 2012;8(11):e1002984. doi: 10.1371/journal.ppat.1002984. Epub 2012 Nov 8.

Tim-3-expressing CD4+ and CD8+ T cells in human tuberculosis (TB) exhibit polarized effector memory phenotypes and stronger anti-TB effector functions.

Author information

  • 1Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China ; College of Life Sciences, Jinan University, Guangzhou, China.


T-cell immune responses modulated by T-cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) during Mycobacterium tuberculosis (Mtb) infection in humans remain poorly understood. Here, we found that active TB patients exhibited increases in numbers of Tim-3-expressing CD4(+) and CD8(+) T cells, which preferentially displayed polarized effector memory phenotypes. Consistent with effector phenotypes, Tim-3(+)CD4(+) and Tim-3(+)CD8(+) T-cell subsets showed greater effector functions for producing Th1/Th22 cytokines and CTL effector molecules than Tim-3(-) counterparts, and Tim-3-expressing T cells more apparently limited intracellular Mtb replication in macrophages. The increased effector functions for Tim-3-expressing T cells consisted with cellular activation signaling as Tim-3(+)CD4(+) and Tim-3(+)CD8(+) T-cell subsets expressed much higher levels of phosphorylated signaling molecules p38, stat3, stat5, and Erk1/2 than Tim-3- controls. Mechanistic experiments showed that siRNA silencing of Tim-3 or soluble Tim-3 treatment interfering with membrane Tim-3-ligand interaction reduced de novo production of IFN-γ and TNF-α by Tim-3-expressing T cells. Furthermore, stimulation of Tim-3 signaling pathways by antibody cross-linking of membrane Tim-3 augmented effector function of IFN-γ production by CD4(+) and CD8(+) T cells, suggesting that Tim-3 signaling helped to drive stronger effector functions in active TB patients. This study therefore uncovered a previously unknown mechanism for T-cell immune responses regulated by Tim-3, and findings may have implications for potential immune intervention in TB.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk