Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Appl Microbiol Biotechnol. 2013 Mar;97(6):2357-65. doi: 10.1007/s00253-012-4485-2. Epub 2012 Nov 10.

Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli.

Author information

  • 1Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, People's Republic of China.

Abstract

We constructed a biosynthetic pathway of isoprene production in Escherichia coli by introducing isoprene synthase (ispS) from Populus alba. 1-deoxy-D-xylulose 5-phosphate synthase (dxs), 1-deoxy-D-xylulose 5-phosphate reductoisomerase (dxr) and isopentenyl diphosphate (IPP) isomerase (idi) were overexpressed to enhance the isoprene production. The isoprene production was improved 0.65, 0.16, and 1.22 fold over the recombinant BL21 (pET-30a-ispS), respectively, and idi was found to be a key regulating point for isoprene production. In order to optimize the production of isoprene in E. coli, we attempted to construct polycistronic operons based on pET-30a with genes dxs, dxr, and idi in various orders. The highest isoprene production yield of 2.727 mg g(-1) h(-1) (per dry weight) was achieved by E. coli transformed with pET-30a-dxs/dxr/idi. Interestingly, the gene order was found to be consistent with that of the metabolic pathway. This indicates that order of genes is a significant concern in metabolic engineering and a sequential expression pattern can be optimized according to the biosynthetic pathway for efficient product synthesis.

PMID:
23143466
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk