Display Settings:

Format

Send to:

Choose Destination
Water Air Soil Pollut. 2012 Nov;223(9):5575-5597. Epub 2012 Sep 12.

Evaluation of the Impacts of Marine Salts and Asian Dust on the Forested Yakushima Island Ecosystem, a World Natural Heritage Site in Japan.

Author information

  • 1Research Institute for Humanity and Nature, 457-4 Kamigamo Motoyama, Kita-ku, Kyoto, 603-8047 Japan.

Abstract

To elucidate the influence of airborne materials on the ecosystem of Japan's Yakushima Island, we determined the elemental compositions and Sr and Nd isotope ratios in streamwater, soils, vegetation, and rocks. Streamwater had high Na and Cl contents, low Ca and HCO(3) contents, and Na/Cl and Mg/Cl ratios close to those of seawater, but it had low pH (5.4 to 7.1), a higher Ca/Cl ratio than seawater, and distinct (87)Sr/(86)Sr ratios that depended on the bedrock type. The proportions of rain-derived cations in streamwater, estimated by assuming that Cl was derived from sea salt aerosols, averaged 81 % for Na, 83 % for Mg, 36 % for K, 32 % for Ca, and 33 % for Sr. The Sr value was comparable to the 28 % estimated by comparing Sr isotope ratios between rain and granite bedrock. The soils are depleted in Ca, Na, P, and Sr compared with the parent materials. At Yotsuse in the northwestern side, plants and the soil pool have (87)Sr/(86)Sr ratios similar to that of rainwater with a high sea salt component. In contrast, the Sr and Nd isotope ratios of soil minerals in the A and B horizons approach those of silicate minerals in northern China's loess soils. The soil Ca and P depletion results largely from chemical weathering of plagioclase and of small amounts of apatite and calcite in granitic rocks. This suggests that Yakushima's ecosystem is affected by large amounts of acidic precipitation with a high sea salt component, which leaches Ca and its proxy (Sr) from bedrock into streams, and by Asian dust-derived apatite, which is an important source of P in base cation-depleted soils.

PMID:
23136452
[PubMed]
PMCID:
PMC3487003
Free PMC Article

Images from this publication.See all images (7)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk