Send to:

Choose Destination
See comment in PubMed Commons below
J Biomed Mater Res A. 2013 Jun;101(6):1550-8. doi: 10.1002/jbm.a.34456. Epub 2012 Nov 7.

Growth and osteogenic differentiation of alveolar human bone marrow-derived mesenchymal stem cells on chitosan/hydroxyapatite composite fabric.

Author information

  • 1Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.


Scaffolds can be used for tissue engineering because they can serve as templates for cell adhesion and proliferation for tissue repair. In this study, chitosan/hydroxyapatite (CS/HAp) composites were prepared by coprecipitation synthesis. Then, CS and CS/HAp fabrics were prepared by wet spinning. CS fibers with a diameter of 15 ± 1.3 μm and CS/HAp fibers with a diameter of 22 ± 1.2 μm were successfully produced; incorporation of HAp into the CS/HAp fibers was confirmed by X-ray diffraction analysis. Biological in vitro evaluations showed that human mesenchymal stem cells (hMSCs) cultured on CS/HAp fabric showed increased proliferation compared to those cultured on pure CS fabric, which was observed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, DNA content assay, and [(3) H] thymidine incorporation assay. Neither the CS nor CS/HAp scaffold exhibited any cytotoxicity to hMSCs, as shown by viability staining and cytotoxicity fluorescence image assays. After 10 days of culturing, the attachment of cells onto the scaffold was observed by scanning electron microscopy. Furthermore, under osteogenic differentiation conditions, alkaline phosphatase (ALP) activity and calcium accumulation was higher in cells cultured on the CS/HAp scaffold than in cells cultured on the CS scaffold. The mRNA expression of osteoblast markers, including ALP, osteocalcin, Co1Ia1, and runt-related transcription factor 2, was higher in cells cultured on CS/HAp than in cells cultured on the CS fabric. The results of this study indicate that the CS/HAp composite fabric may serve as a good scaffold for bone tissue engineering applications.

Copyright © 2012 Wiley Periodicals, Inc.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk