Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Med Chem. 2012 Dec;58:272-80. doi: 10.1016/j.ejmech.2012.10.020. Epub 2012 Oct 23.

Synthesis, in silico, in vitro, and in vivo investigation of 5-[¹¹C]methoxy-substituted sunitinib, a tyrosine kinase inhibitor of VEGFR-2.

Author information

  • 1Centro de Bioinformática y Simulación Molecular, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile.

Abstract

Sunitinib (SU11248) is a highly potent tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor (VEGFR). Radiolabeled inhibitors of receptor tyrosine kinases (RTKs) might be useful tools for monitoring RTKs levels in tumor tissue giving valuable information for anti-angiogenic therapy. Herein we report the synthesis of 5-methoxy-sunitinib 5 and its (11)C-radiolabeled analog [(11)C]-5. The non-radioactive reference compound 5 was prepared by Knoevenagel condensation of 5-methoxy-2-oxindole with the corresponding substituted 5-formyl-1H-pyrrole. A binding constant (K(d)) of 20 nM for 5 was determined by competition binding assay against VEGFR-2. In addition, the binding mode of sunitinib and its 5-methoxy substituted derivative was studied by flexible docking simulations. These studies revealed that the substitution of the fluorine at position 5 of the oxindole scaffold by a methoxy group did not affect the inhibitor orientation, but affected the electrostatic and van der Waals interactions of the ligand with residues near the DFG motif of VEGFR-2. 5-[(11)C]methoxy-sunitinib ([(11)C]-5) was synthesized by reaction of the desmethyl precursor with [(11)C]CH(3)I in the presence of DMF and NaOH in 17 ± 3% decay-corrected radiochemical yield at a specific activity of 162-205 GBq/μmol (EOS). In vivo stability studies of [(11)C]-5 in rat blood showed that more than 70% of the injected compound was in blood stream, 60 min after administration.

Copyright © 2012 Elsevier Masson SAS. All rights reserved.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Chemical Information

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk