Send to:

Choose Destination
See comment in PubMed Commons below
Brain Res Bull. 1990 Jan;24(1):49-69.

Search after neurobiological profile of individual-specific features of Wistar rats.

Author information

  • 1Psychoneuropharmacological Research-Unit, University of Nijmegen, The Netherlands.


The first part of this study demonstrates that the bimodal shape of variation in "fleeing" and "nonfleeing" or "freezing" rats of an outbred strain of Wistar rats forms part of an overall biomodal variation in behavioural responses to injections of agents, which selectively alter, or reflect, the noradrenergic or dopaminergic activity in the ventral striatum, and dopaminergic activity in the dorsal striatum, the GABA-ergic activity in the substantia nigra, pars reticulata, and the GABA-ergic activity in the deeper layers of the superior colliculus. It is concluded that the "fleeing" and "nonfleeing" rats, each of them marked by their own trans-situational consistency in pharmacological and behavioural responses, represent the two fundamentally different types of individuals which normally exist in unselected populations of rodents. The second part of this study demonstrates that the pharmacogenetic selection of apomorphine-susceptible (APO-SUS) and apomorphine-unsusceptible (APO-UNSUS) rats, i.e., one individual-specific feature of the overall bimodal variation for pharmacological responses in our outbred strain of rats, is a valid tool to disperse the above-mentioned individual-specific features as far as possible. First, these lines allowed us to prove that the overall bimodal shape of variation in pharmacological and behavioral responses of individual outbred rats is in part genetically determined. Second, these lines allowed us to prove that a bimodal variation in neurochemical features of the circuitry, in which the ventral striatum is embedded, underlies the overall bimodal variation in pharmacological and behavioural responses. Third, these lines allowed us to demonstrate that a fundamental difference in organizing behaviour with the help of external and internal information has to be considered as a common factor giving rise to the individual differentiation found in the present study. Given the notion that this individual differentiation appears to be valid across lines, substrains and strains of rats, the present study lays the foundation for understanding at least a part of the physiological basis underlying differences between the two fundamentally different types of individuals existing in normal populations of rodents.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk