Send to

Choose Destination
See comment in PubMed Commons below
Acta Pharmacol Sin. 2013 Jan;34(1):104-12. doi: 10.1038/aps.2012.106. Epub 2012 Oct 29.

A novel approach to induction and rehabilitation of deficits in forelimb function in a rat model of ischemic stroke.

Author information

  • 1Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE, Canada.



Constraint-induced movement therapy (CIMT), which forces use of the impaired arm following unilateral stroke, promotes functional recovery in the clinic but animal models of CIMT have yielded mixed results. The aim of this study is to develop a refined endothelin-1 (ET-1) model of focal ischemic injury in rats that resulted in reproducible, well-defined lesions and reliable upper extremity impairments, and to determine if an appetitively motivated form of rehabilitation (voluntary forced use movement therapy; FUMT) would accelerate post-ischemic motor recovery.


Male Sprague Dawley rats (3 months old) were given multiple intracerebral microinjections of ET-1 into the sensorimotor cortex and dorsolateral striatum. Sham-operated rats received the same surgical procedure up to but not including the drill holes on the skull. Functional deficits were assessed using two tests of forelimb placing, a forelimb postural reflex test, a forelimb asymmetry test, and a horizontal ladder test. In a separate experiment ET-1 stroke rats were subjected to daily rehabilitation with FUMT or with a control therapy beginning on post-surgery d 5. Performance and post-mortem analysis of lesion volume and regional BDNF expression were measured.


Following microinjections of ET-1 animals exhibited significant deficits in contralateral forelimb function on a variety of tests compared with the sham group. These deficits persisted for up to 20 d with no mortality and were associated with consistent lesion volumes. FUMT therapy resulted in a modest but significantly accelerated recovery in the forelimb function as compared with the control therapy, but did not affect lesion size or BDNF expression in the ipsilesional hemisphere.


We conclude that refined ET-1 microinjection protocols and forcing use of the impaired forelimb in an appetitively motivated paradigm may prove useful in developing strategies to study post-ischemic rehabilitation and neuroplasticity.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk