Display Settings:

Format

Send to:

Choose Destination
J Dent Res. 2013 Jan;92(1):45-50. doi: 10.1177/0022034512465435. Epub 2012 Oct 25.

Modeling susceptibility to periodontitis.

Author information

  • 1Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, The Netherlands. M.Laine@acta.nl

Erratum in

  • J Dent Res. 2013 Jun;92(6):566.

Abstract

Chronic inflammatory diseases like periodontitis have a complex pathogenesis and a multifactorial etiology, involving complex interactions between multiple genetic loci and infectious agents. We aimed to investigate the influence of genetic polymorphisms and bacteria on chronic periodontitis risk. We determined the prevalence of 12 single-nucleotide polymorphisms (SNPs) in immune response candidate genes and 7 bacterial species of potential relevance to periodontitis etiology, in chronic periodontitis patients and non-periodontitis control individuals (N = 385). Using decision tree analysis, we identified the presence of bacterial species Tannerella forsythia, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and SNPs TNF -857 and IL-1A -889 as discriminators between periodontitis and non-periodontitis. The model reached an accuracy of 80%, sensitivity of 85%, specificity of 73%, and AUC of 73%. This pilot study shows that, on the basis of 3 periodontal pathogens and SNPs, patterns may be recognized to identify patients at risk for periodontitis. Modern bioinformatics tools are valuable in modeling the multifactorial and complex nature of periodontitis.

PMID:
23100272
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk