Display Settings:

Format

Send to:

Choose Destination
Oper Dent. 2013 May-Jun;38(3):324-33. doi: 10.2341/12-060-L. Epub 2012 Oct 23.

Temperature increase at the light guide tip of 15 contemporary LED units and thermal variation at the pulpal floor of cavities: an infrared thermographic analysis.

Author information

  • 1School of Dentistry, University of São Paulo, Dental Materials, São Paulo, Brazil.

Abstract

In this study, a comprehensive investigation on the temperature increase at the light guide tip of several commercial light-emitting diode (LED) light-curing units (LCUs) and the associated thermal variation (ΔT) at the pulpal floor of dental cavities was carried out. In total, 15 LEDs from all generations were investigated, testing a quartz-tungsten-halogen (QTH) unit as a reference. The irradiance level was measured with a power meter, and spectral distribution was analyzed using a spectrometer. Temperature increase at the tip was measured with a type-K thermocouple connected to a thermometer, while ΔT at the pulpal floor was measured by an infrared photodetector in class V cavities, with a 1-mm-thick dentin pulpal floor. The relationship among measured irradiance, ΔT at the tip, and ΔT at the pulpal floor was investigated using regression analyses. Large discrepancies between the expected and measured irradiances were detected for some LCUs. Most of the LCUs showed an emission spectrum narrower than the QTH unit, with emission peaks usually between 450 and 470 nm. The temperature increase at the tip followed a logarithmic growth for LCUs with irradiance ≥1000 mW/cm(2), with ΔT at the tip following the measured irradiance linearly (R(2)=0.67). Linear temperature increase at the pulpal floor over the 40-second exposure time was observed for several LCUs, with linear association between ΔT at the pulpal floor and measured irradiance (R(2)=0.39) or ΔT at the tip (R(2)=0.28). In conclusion, contemporary LED units show varied irradiance levels that affect the temperature increase at the light guide tip and, as a consequence, the thermal variation at the pulpal floor of dental cavities.

PMID:
23092145
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Allen Press, Inc.
    Loading ...
    Write to the Help Desk