Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Eur J Appl Physiol. 2013 Sep;113(9):2183-92. doi: 10.1007/s00421-012-2523-5. Epub 2012 Oct 19.

Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight.

Author information

  • 1Department of Orthopedic Surgery, University of California San Diego, San Diego, CA 92103-8894, USA. ahargens@ucsd.edu

Abstract

When applied individually, exercise countermeasures employed to date do not fully protect the cardiovascular and musculoskeletal systems during prolonged spaceflight. Recent ground-based research suggests that it is necessary to perform exercise countermeasures within some form of artificial gravity to prevent microgravity deconditioning. In this regard, it is important to provide normal foot-ward loading and intravascular hydrostatic-pressure gradients to maintain musculoskeletal and cardiovascular function. Aerobic exercise within a centrifuge restores cardiovascular function, while aerobic exercise within lower body negative pressure restores cardiovascular function and helps protect the musculoskeletal system. Resistive exercise with vibration stimulation may increase the effectiveness of resistive exercise by preserving muscle function, allowing lower intensity exercises, and possibly reducing risk of loss of vision during prolonged spaceflight. Inexpensive methods to induce artificial gravity alone (to counteract head-ward fluid shifts) and exercise during artificial gravity (for example, by short-arm centrifuge or exercise within lower body negative pressure) should be developed further and evaluated as multi-system countermeasures.

PMID:
23079865
[PubMed - in process]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk