Send to

Choose Destination
See comment in PubMed Commons below
Nanoscale. 2012 Nov 21;4(22):7090-6. doi: 10.1039/c2nr32314a.

Photon upconverting nanoparticles for luminescent sensing of temperature.

Author information

  • 1Institute of Analytical Chemistry, Chemo- & Biosensors, University of Regensburg, 93040 Regensburg, Germany.


Photon upconverting nanoparticles convert near-infrared into visible light (anti-Stokes emission), which strongly reduces the background of autofluorescence and light scattering in biological materials. Hexagonal NaYF(4) nanocrystals doped with Yb(3+) as the sensitizer and Er(3+)/Ho(3+)/Tm(3+) as the activator display at least two emission lines that respond differently to temperature changes. The ratio of the main emission line intensities enables a self-referenced optical readout of the temperature in the physiologically relevant range from 20 to 45 °C. Upconverting nanoparticles of the type NaYF(4):Yb, Er covered by an inactive shell of NaYF(4) are bright and allow for resolving temperature differences of less than 0.5 °C in the physiological range. The optical readout of this nanoparticle-based thermometer offers many options for imaging the two-dimensional distribution of temperature.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk