Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Bone. 2013 Jan;52(1):259-67. doi: 10.1016/j.bone.2012.09.036. Epub 2012 Oct 8.

The effect of CCL3 and CCR1 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice.

Author information

  • 1Laboratory Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010, Belo Horizonte, MG, Brazil. silvana.albuquerque@gmail.com

Abstract

Bone remodeling is affected by mechanical loading and inflammatory mediators, including chemokines. The chemokine (C-C motif) ligand 3 (CCL3) is involved in bone remodeling by binding to C-C chemokine receptors 1 and 5 (CCR1 and CCR5) expressed on osteoclasts and osteoblasts. Our group has previously demonstrated that CCR5 down-regulates mechanical loading-induced bone resorption. Thus, the present study aimed to investigate the role of CCR1 and CCL3 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Our results showed that bone remodeling was significantly decreased in CCL3(-/-) and CCR1(-/-) mice and in animals treated with Met-RANTES (an antagonist of CCR5 and CCR1). mRNA levels of receptor activator of nuclear factor kappa-B (RANK), its ligand RANKL, tumor necrosis factor alpha (TNF-α) and RANKL/osteoprotegerin (OPG) ratio were diminished in the periodontium of CCL3(-/-) mice and in the group treated with Met-RANTES. Met-RANTES treatment also reduced the levels of cathepsin K and metalloproteinase 13 (MMP13). The expression of the osteoblast markers runt-related transcription factor 2 (RUNX2) and periostin was decreased, while osteocalcin (OCN) was augmented in CCL3(-/-) and Met-RANTES-treated mice. Altogether, these findings show that CCR1 is pivotal for bone remodeling induced by mechanical loading during orthodontic tooth movement and these actions depend, at least in part, on CCL3.

Copyright © 2012 Elsevier Inc. All rights reserved.

PMID:
23059626
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk