Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2012 Aug 13;20(17):19599-609. doi: 10.1364/OE.20.019599.

Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL.

Author information

  • 1Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada. qunbi.zhuge@mail.mcgill.ca

Abstract

In this paper, we present a carrier phase recovery (CPR) algorithm using a modified superscalar parallelization based phase locked loop (M-SSP-PLL) combined with a maximum-likelihood (ML) phase estimation. Compared to the original SSP-PLL, M-SSP-PLL + ML reduces the required buffer size using a novel superscalar structure. In addition, by removing the differential coding/decoding and employing ML phase recovery it also improves the performance. In simulation, we show that the laser linewidth tolerance of M-SSP-PLL + ML is comparable to blind phase search (BPS) algorithm, which is known to be one of the best CPR algorithms in terms of performance for arbitrary QAM formats. In 28 Gbaud QPSK (112 Gb/s) and 16-QAM (224 Gb/s), and 7 Gbaud 64-QAM (84 Gb/s) experiments, it is also demonstrated that M-SSP-PLL + ML can increase the transmission distance by at least 12% compared to BPS for each of them. Finally, the computational complexity is discussed and a significant reduction is shown for our algorithm with respect to BPS.

PMID:
23038601
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk