Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Environ Monit. 2012 Nov;14(11):2929-38. doi: 10.1039/c2em30213f.

Phosphorus concentration and loading reductions following changes in fertilizer application and formulation on managed turf.

Author information

  • 1USDA-ARS-Soil Drainage Research Unit, 590 Woody Hayes Drive, Columbus, OH 43210, USA. kevin.king@ars.usda.gov

Abstract

Excess phosphorus, particularly in surface waters can lead to severe eutrophication. Identifying source areas, quantifying contributions, and evaluating management practices are required to address current and future water quality concerns. A before-after study was conducted from 2003-2010 on a sub-watershed of Northland Country Club Golf Course in Duluth, MN to demonstrate the impacts of two different phosphorus management approaches (Period 1: traditional application and timing using commercially available synthetic blends; Period 2: reduced rate, low dose applications, and organic formulations). Outflow median dissolved reactive phosphorus (DRP) and total phosphorus (TP) stream concentrations were significantly less in Period 2 compared to Period 1. There was no statistical difference in the mean TP loading in Period 1 (0.25 kg ha(-1) year(-1)) compared to Period 2 (0.20 kg ha(-1) year(-1)) or between the DRP loading in Period 1 (0.15 kg ha(-1) year(-1)) compared to Period 2 (0.09 kg ha(-1) year(-1)). However, by switching to organic phosphorus formulations and reducing application rates by greater than 75%, substantial reduction in DRP and TP concentrations was achieved. Based on these findings it is recommended that turf managers (parks and recreation to golf courses) explore the feasibility of altering their fertility management related to phosphorus by including organic formulations, low dose applications, and overall rate reductions. Additionally, it is recommended that the fertilizer industry develop and make more readily available commercial blends with lesser to zero amounts of phosphorus.

PMID:
23026887
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk