Send to:

Choose Destination
See comment in PubMed Commons below
Dalton Trans. 2012 Dec 7;41(45):13927-35. doi: 10.1039/c2dt31471a. Epub 2012 Oct 1.

Aqueous-phase hydroformylation of 1-octene using hydrophilic sulfonate salicylaldimine dendrimers.

Author information

  • 1Department of Chemistry, University of Cape Town, South Africa.


Water-soluble dendritic ligands based on tris-2-(5-sulfonato salicylaldimine ethyl)amine (5) and DAB-(5-sulfonato salicylaldimine) (6) (DAB = diaminobutane) were synthesized by means of Schiff base condensation and sulfonation reactions. These dendritic ligands were fully characterized by (1)H NMR, (13)C NMR and FT-IR spectroscopy, elemental analysis and mass spectrometry. Dendritic ligands (5 and 6) in combination with [RhCl(COD)](2) (COD = 1,5-cyclooctadiene) were evaluated in aqueous biphasic hydroformylation of 1-octene. New water-soluble mononuclear 5-sulfonato propylsalicylaldimine Rh(i) complexes (7 and 8) were synthesized and characterized using (1)H NMR, (13)C NMR and FT-IR spectroscopy, elemental analysis as well as mass spectrometry. These complexes were applied as catalyst precursors in aqueous biphasic hydroformylation reactions. All the catalyst precursors were active in the hydroformylation of 1-octene under the investigated conditions. Optimal conditions were realized at 75 °C (40 bars), where the best selectivity for aldehydes was noticed. Catalyst recycling was achieved up to 5 times with minimal loss in conversion and consistent chemoselectivities and regioselectivities. Less Rh leaching was observed in the dendritic systems (5 and 6)/[RhCl(COD)](2) as compared to mononuclear catalyst precursors (7 and 8) as determined by inductively coupled plasma-mass spectrometry (ICP-MS).

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk