Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mutat Res. 2013 Jan-Mar;752(1):25-35. doi: 10.1016/j.mrrev.2012.09.001. Epub 2012 Sep 23.

The role of DNA repair in the pluripotency and differentiation of human stem cells.

Author information

  • 1Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP 05508 900, Brazil.

Abstract

All living cells utilize intricate DNA repair mechanisms to address numerous types of DNA lesions and to preserve genomic integrity, and pluripotent stem cells have specific needs due to their remarkable ability of self-renewal and differentiation into different functional cell types. Not surprisingly, human stem cells possess a highly efficient DNA repair network that becomes less efficient upon differentiation. Moreover, these cells also have an anaerobic metabolism, which reduces the mitochondria number and the likelihood of oxidative stress, which is highly related to genomic instability. If DNA lesions are not repaired, human stem cells easily undergo senescence, cell death or differentiation, as part of their DNA damage response, avoiding the propagation of stem cells carrying mutations and genomic alterations. Interestingly, cancer stem cells and typical stem cells share not only the differentiation potential but also their capacity to respond to DNA damage, with important implications for cancer therapy using genotoxic agents. On the other hand, the preservation of the adult stem cell pool, and the ability of cells to deal with DNA damage, is essential for normal development, reducing processes of neurodegeneration and premature aging, as one can observe on clinical phenotypes of many human genetic diseases with defects in DNA repair processes. Finally, several recent findings suggest that DNA repair also plays a fundamental role in maintaining the pluripotency and differentiation potential of embryonic stem cells, as well as that of induced pluripotent stem (iPS) cells. DNA repair processes also seem to be necessary for the reprogramming of human cells when iPS cells are produced. Thus, the understanding of how cultured pluripotent stem cells ensure the genetic stability are highly relevant for their safe therapeutic application, at the same time that cellular therapy is a hope for DNA repair deficient patients.

Copyright © 2012 Elsevier B.V. All rights reserved.

PMID:
23010441
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk