Format

Send to:

Choose Destination
See comment in PubMed Commons below
Environ Health Perspect. 2012 Nov;120(11):1578-84. doi: 10.1289/ehp.1205391. Epub 2012 Sep 10.

Competitive androgen receptor antagonism as a factor determining the predictability of cumulative antiandrogenic effects of widely used pesticides.

Author information

  • 1Centre for Toxicology, School of Pharmacy, London, United Kingdom. frances.orton@brunel.ac.uk

Abstract

BACKGROUND:

Many pesticides in current use have recently been revealed as in vitro androgen receptor (AR) antagonists, but information about their combined effects is lacking.

OBJECTIVE:

We investigated the combined effects and the competitive AR antagonism of pesticide mixtures.

METHODS:

We used the MDA-kb2 assay to test a combination of eight AR antagonists that did not also possess AR agonist properties ("pure" antagonists; 8 mix: fludioxonil, fenhexamid, ortho-phenylphenol, imazalil, tebuconazole, dimethomorph, methiocarb, pirimiphos-methyl), a combination of five AR antagonists that also showed agonist activity (5 mix: cyprodinil, pyrimethanil, vinclozolin, chlorpropham, linuron), and all pesticides combined (13 mix). We used concentration addition (CA) and independent action (IA) to formulate additivity expectations, and Schild plot analyses to investigate competitive AR antagonism.

RESULTS:

A good agreement between the effects of the mixture of eight "pure" AR antagonists and the responses predicted by CA was observed. Schild plot analysis revealed that the 8 mix acted by competitive AR antagonism. However, the observed responses of the 5 mix and the 13 mix fell within the "prediction window" boundaries defined by the predicted regression curves of CA and IA. Schild plot analysis with these mixtures yielded anomalous responses incompatible with competitive receptor antagonism.

CONCLUSIONS:

A mixture of widely used pesticides can, in a predictable manner, produce combined AR antagonist effects that exceed the responses elicited by the most potent component alone. Inasmuch as large populations are regularly exposed to mixtures of antiandrogenic pesticides, our results underline the need for considering combination effects for these substances in regulatory practice.

PMID:
23008280
[PubMed - indexed for MEDLINE]
PMCID:
PMC3556629
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for National Institute of Environmental Health Sciences Icon for PubMed Central
    Loading ...
    Write to the Help Desk