Send to:

Choose Destination
See comment in PubMed Commons below
Colloids Surf B Biointerfaces. 2013 Feb 1;102:218-26. doi: 10.1016/j.colsurfb.2012.08.015. Epub 2012 Aug 19.

Polyphenol-SiO2 hybrid biosorbent for heavy metal removal. Yerba mate waste (Ilex paraguariensis) as polyphenol source: kinetics and isotherm studies.

Author information

  • 1Cátedra de Química Analítica Instrumental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Junín 956, C1113AAD Buenos Aires, Argentina.


A low-cost biosorbent hybrid material ready for application was obtained in this work. Yerba mate (Ilex paraguariensis) milling residual dust was used as a polyphenol source by ethanolic extraction. Polyphenols were immobilized within a SiO(2) matrix to form an interpenetrated polymer after glutaraldehyde cross-linking. Pb(II), Cr(III) and Cr(VI) were chosen as model metals for adsorption. The hybrid materials were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and Nitrogen Adsorption Isotherms. Adsorption experimental data were analysed using Langmuir, Freundlich, Dubinin-Radushkevich, Temkin, Redlich-Peterson, Sips and Toth isotherm models along with the evaluation of adsorption energy and standard free energy (ΔG°). The adsorption was observed to be pH dependent. The main mechanism of metal adsorption was found to be a spontaneous charge associated interaction. Electron Spin Resonance (ESR) spectroscopy confirmed that Cr(VI) adsorption was an adsorption-coupled reaction and the adsorbed specie was Cr(V). The hybrid matrix probed its adsorption capacity of Cr(III) in a non-treated tannery wastewater.

Copyright © 2012 Elsevier B.V. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk