Lower hybrid drift waves: space observations

Phys Rev Lett. 2012 Aug 3;109(5):055001. doi: 10.1103/PhysRevLett.109.055001. Epub 2012 Jul 31.

Abstract

Lower hybrid drift waves (LHDWs) are commonly observed at plasma boundaries in space and laboratory, often having the strongest measured electric fields within these regions. We use data from two of the Cluster satellites (C3 and C4) located in Earth's magnetotail and separated by a distance of the order of the electron gyroscale. These conditions allow us, for the first time, to make cross-spacecraft correlations of the LHDWs and to determine the phase velocity and wavelength of the LHDWs. Our results are in good agreement with the theoretical prediction. We show that the electrostatic potential of LHDWs is linearly related to fluctuations in the magnetic field magnitude, which allows us to determine the velocity vector through the relation ∫δEdt·v = ϕ(δB)(∥). The electrostatic potential fluctuations correspond to ∼10% of the electron temperature, which suggests that the waves can strongly affect the electron dynamics.